Removal of reactive blue 19 from aqueous solution by pomegranate residual-based activated carbon: optimization by response surface methodology
نویسندگان
چکیده
BACKGROUND In this research, response surface methodology (RSM) was applied to optimize Reactive Blue 19 removal by activated carbon from pomegranate residual. A 24 full factorial central composite design (CCD) was applied to evaluate the effects of initial pH, adsorbent dose, initial dye concentration, and contact time on the dye removal efficiency. METHODOLOGY The activated carbon prepared by 50 wt.% phosphoric acid activation under air condition at 500°C. The range of pH and initial dye concentration were selected in a way that considered a wide range of those variables. Furthermore, the range of contact time and adsorbent dose were determined based on initial tests. Levels of selected variables and 31 experiments were determined. MiniTab (version 16.1) was used for the regression and graphical analyses of the data obtained. RESULTS It was found that the decrease of initial dye concentration and the increase of initial pH, adsorbent dose, and contact time are beneficial for improving the dye removal efficiency. Analysis of variance (ANOVA) results presented high R2 value of 99.17% for Reactive Blue 19 dye removal, which indicates the accuracy of the polynomial model is acceptable. CONCLUSIONS Initial pH of 11, adsorbent dose of 1.025 g/L, initial dye concentration of 100 mg/L, and contact time of 6.8 minutes found to be the optimum conditions. Dye removal efficiency of 98.7% was observed experimentally at optimum point which confirmed close to model predicted (98.1%) result.
منابع مشابه
Adsorption of Reactive Blue 19 onto activated carbon prepared from pomegranate residual by phosphoric acid activation: Kinetic, Isotherm and Thermodynamic studies
In this study, the adsorption of Reactive blue 19 onto pomegranate residual-based activated carbon PRAC was investigated in aqueous solution. The activated carbon prepared by phosphoric acid activation under air condition. PRAC was characterized for its surface chemistry by point of zero charge measurements, Scanning Electron Microscopy and nitrogen adsorption at 77 K. The effect of operational...
متن کاملRemoval of methylene blue from aqueous solution using nano-TiO2/UV process: Optimization by response surface methodology
This work describes the photocatalytic removal of methylene blue from aqueous solution by titanium dioxide nanoparticles under ultraviolet irradiation in a batch system. The effect of operational parameters such as irradiation time, nano titanium dioxide dosage, pH and initial methylene blue concentration were analyzed and optimized by response surface methodology in the nano titanium dioxide/u...
متن کاملThe efficiency of modified powdered activated carbon for removal of ammonia nitrogen from aqueous solution: a process optimization using RSM (Response Surface Methodology), adsorption isotherm and kinetic study
The objective of this study was to determine the performance of modified commercial powdered activated carbon (MCPAC) in removal of ammonia from aqueous solution. The effects of adsorbent dosage (0.5–1.5 g/L), ammonia concentration (100–200 mg/L), pH (3 to 9) and contact time (2 to 120 min) were examined. In this study, experiments were performed based on Response Surface Methodology (RSM). The...
متن کاملResponse Surface Methodology for Optimizing Adsorption Process Parameters of Reactive Blue 21 onto Modified Kaolin
In this research modified Kaolin by Cetyltrimethylammonium bromide is used as an adsorbent for the removal of Reactive Blue 21 from aqueous solutions. Response Surface Methodology was used to study the effect of independent variables, such as Reactive Blue 21 dye concentration (20, 40, 60, 80 and 100 mg/L), time (10, 20, 30, 40 and 50), initial pH (2, 4, 6, 8 and 10) and modified Kaolin dosage ...
متن کاملInvestigation of the efficiency of powder activated carbon magnetized with Fe3O4 nanoparticles in the removal of catechol from aqueous solutions by response surface methodology
Background and Objective: The activities of various industries produce a wide range of pollutants and toxic compounds. One of these compounds is the catechol, a cyclic organic compound with high toxicity and resistant to degradation. Therefore, the purpose of this study was to investigate efficiency of powder activated carbon magnetized with Fe3O4 nanoparticles in the removal of catechol from a...
متن کامل